Quantum Principal Bundles
نویسنده
چکیده
A noncommutative-geometric generalization of the theory of principal bundles is sketched. A differential calculus over corresponding quantum principal bundles is analysed. The formalism of connections is presented. In particular, operators of covariant derivative and horizontal projection are described and analysed. Quantum counterparts for the Bianchi identity and the Weil’s homomorphism are found. Illustrative examples are considered.
منابع مشابه
Bundles over Quantum RealWeighted Projective Spaces
The algebraic approach to bundles in non-commutative geometry and the definition of quantum real weighted projective spaces are reviewed. Principal U(1)-bundles over quantum real weighted projective spaces are constructed. As the spaces in question fall into two separate classes, the negative or odd class that generalises quantum real projective planes and the positive or even class that genera...
متن کاملOn Framed Quantum Principal Bundles
A noncommutative-geometric formalism of framed principal bundles is sketched, in a special case of quantum bundles (over quantum spaces) possessing classical structure groups. Quantum counterparts of torsion operators and Levi-Civita type connections are analyzed. A construction of a natural differential calculus on framed bundles is described. Illustrative examples are presented.
متن کاملGeneral Frame Structures on Quantum Principal Bundles
A noncommutative-geometric generalization of the classical formalism of frame bundles is developed, incorporating into the theory of quantum principal bundles the concept of the Levi-Civita connection. The construction of a natural differential calculus on quantum principal frame bundles is presented, including the construction of the associated differential calculus on the structure group. Gen...
متن کاملX iv : h ep - t h / 94 01 01 9 v 1 6 J an 1 99 4 Quantum Principal Fiber Bundles : Topological Aspects ∗
We introduce the notion of locally trivial quantum principal bundles. The base space and total space are compact quantum spaces (unital C-algebras), the structure group is a compact matrix quantum group. We prove that a quantum bundle admits sections if and only if it is trivial. Using a quantum version of Čech cocycles, we obtain a reconstruction theorem for quantum principal bundles. The clas...
متن کاملA COVERING PROPERTY IN PRINCIPAL BUNDLES
Let $p:Xlo B$ be a locally trivial principal G-bundle and $wt{p}:wt{X}lo B$ be a locally trivial principal $wt{G}$-bundle. In this paper, by using the structure of principal bundles according to transition functions, we show that $wt{G}$ is a covering group of $G$ if and only if $wt{X}$ is a covering space of $X$. Then we conclude that a topological space $X$ with non-simply connected universal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008